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In this paper, we consider the linear heat equation arisen from the Burgers’s equation using the Hopf–Cole
transformation. Discretization of this equation with respect to the space variable results in a linear system
of ordinary differential equations. The solution of this system involves in computing exp(αA)y for some
vector y, where A is a large special tridiagonal matrix and α is a positive real number. We give an explicit
expression for computing exp(αA)y. Finally, some numerical experiments are given to show the efficiency
of the method.

Keywords: Burgers’ equation; Hopf–Cole transformation; semi-discretization; system of ODEs; matrix
exponential
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1. Introduction

Consider the Burgers’s equation

ut + uux = νuxx 0 < x < �, t > 0, (1)

subject to the initial and boundary conditions

u(x, 0) = f (x), 0 ≤ x ≤ �,

u(0, t) = g0(t), t ≥ 0,

u(�, t) = g1(t), t ≥ 0.

The Burgers’s equation appears in many areas of engineering sciences such as models of traffic,
turbulence and fluid flow. There are several methods for solving the Burgers’s equation. Some of
them seek an exact solution of it. These methods are generally classified into two subclasses. In the
first class, by using the wave transformation u(x, t) = U(ξ), where ξ = x − νt , the Burgers’s
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equation is changed into a nonlinear ODE involving U and its first derivative. Then a solution of
the form

U(ξ) =
n∑

i=0

aiϕ
i(ξ),

with ϕ(ξ) = tanh ξ, sech ξ, sec ξ, sn ξ, cn ξ , etc. is sought. It is necessary to mention that sn ξ

and cn ξ are the Jacobi elliptic sine and cosine functions, respectively. Some of the methods in
this category are the tanh-function method [18,21,22,25], the modified extended tanh-function
method [4,5,27] and the Jacobi elliptic function expansion method [7,19]. In the second class, the
exact solutions are sought by using the following transformation

u(x, t) = F(ϕ1, ϕ2, . . .), G(ϕ1, ϕ2, . . .) = 0.

After determining the functions ϕi from G(ϕ1, ϕ2, . . .) = 0, one can obtain the exact solution u via
u(x, t) = F(ϕ1, ϕ2, . . .). Some of the methods in this category are the Bäcklund transformation
[6,14,20,29], Darboux transformation [23] and sine–cosine methods [30–33]. In another method
in this category, the equation is converted to a heat equation by the Hopf–Cole transformation
[12] and then the solution of this heat equation is obtained. Taking different methods for solving
this heat equation gives various methods for solving the Burgers’s equation.

There are many ways to obtain an approximate solution of the Burgers’s equation. In [8]
the Adomian decomposition is applied for solving the Burgers’s equation. A finite-difference
approach can be found in [28]. Mixed finite-difference and boundary element methods were
proposed in [1]. In [16], Kutluay et al. have presented explicit and exact-explicit finite difference
methods for solving Equation (1). They have discretized the heat equation arisen from Hopf–Cole
transformation and given an explicit expression for the exact solution of it. In [17], the authors
have obtained an approximate solution of the equation by the least-squares quadratic B-spline
finite element method. In [15], the numerical results obtained using a lumped Galerkin method
with quadratic B-spline finite elements have been given. Caldwell and Smith in [3] and Caldwell
et al. in [2] proposed the finite element and cubic spline finite element methods, respectively,
for computing an approximate solution of Equation (1). Another method based on the direct
discretization of Equation (1) was proposed by Hon et al. in [11]. Another approach is to find
the solution of the heat equation arisen from Hopf-Cole transformation by its semi-discretization.
In this case a matrix exponential should be computed. In [10], an approximation of this matrix
exponential was obtained by the restrictive Taylor method [13]. In [9], the authors have computed
this matrix exponential by a restrictive Pade approximation.

We focus our attention on the linear heat equation arisen from Equation (1) by the Hopf–
Cole transformation and its semi-discretization. Then a method for computing the arisen matrix
exponential is proposed. For this purpose, we consider two problems of [1] as follows.

Problem 1

ut + uux = νuxx, 0 < x < 1, t > 0,

u(x, 0) = sin(πx), 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, t ≥ 0.

Problem 2

ut + uux = νuxx, 0 < x < 1, t > 0,

u(x, 0) = 4x(1 − x), 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, t ≥ 0.
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1336 D.K. Salkuyeh and F.S. Sharafeh

The series representation of the analytical solution of these problems can be found in [1]. By
the Hopf–Cole transformation u = −2νθx/θ , these equations are transformed into

θt = νθxx, (2)

with the initial conditions for Problems 1 and 2,

θ(x, 0) = θ0(x) = exp {−(2πν)−1(1 − cos πx)}, 0 < x < 1,

θ(x, 0) = θ0(x) = exp {−(3 − 2x)x2/3ν}, 0 < x < 1,

respectively, and boundary conditions for both of the problems are

θx(0, t) = θx(1, t) = 0, t > 0.

The semi-discretization of Equation (2) with respect to the space variable results in a linear system
of ordinary differential equations. The solution of this system involves in computing exp(αA)y

for some vector y, where α is a positive real number and A is usually a large special tridiagonal
matrix. In this paper, an explicit expression for computing exp(αA)y is given.

This paper is organized as follows. In Section 2, the explicit expression for exp(αA)y is
obtained. Section 3 is devoted to some numerical experiments. Concluding remarks are also
given in Section 4.

2. Main results

We subdivide the interval 0 ≤ x ≤ 1 into n + 1 equal subintervals by the grid points xi = ih,

i = 0, 1, 2, . . . , n + 1, where h = 1/(n + 1) and write down Equation (2) at every mesh point
xi = ih, i = 1, 2, . . . , n, along time level t . Then, we substitute

θ(xi+1, t) − 2θ(xi, t) + θ(xi−1, t)

h2
+ O(h2),

for θxx(xi, t) in Equation (2). Now, we denote θ(xj , t) by θj (t). Neglecting the terms of order h2,
it then follows that the values 	j(t) approximating θj (t) will be the exact solution values of the
system of the n ordinary differential equations

d	(t)

dt
= rA	(t), (3)

where 	(t) = [	1(t)	2(t) · · · 	n(t)]T, r = ν/h2 and A is a tridiagonal matrix of order n as
below

A =

⎛
⎜⎜⎜⎜⎜⎝

−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1

⎞
⎟⎟⎟⎟⎟⎠ . (4)

It is necessary to mention that the boundary conditions at points x = 0 and x = 1 have been
written as

	1(t) − 	0(t)

h
= 0,

	n+1(t) − 	n(t)

h
= 0, t > 0,
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respectively. It can be easily seen that the solution of Equation (3) is

	(t) = exp (rtA)	(0), (5)

and if the solution is available at time level t then the solution at level t + k is [26]

	(t + k) = exp (rkA)	(t). (6)

Hence, there are two usual ways for computing the solution of Equation (3) at time level tf . One
is to use Equation (5) substituting t by tf . The other is to pick a natural number s, set k = tf /s and
then use Equation (6) s times, recursively. If the solution is needed at some interior time levels
then the second method is preferred to the first one.

Lemma 2.1 The eigenvalues and eigenvectors of the tridiagonal matrix (4) are given by

λj = −2 + 2 cos
(j − 1)π

n
, j = 1, . . . , n, (7)

and

xj =

⎛
⎜⎜⎜⎜⎜⎝

cos(1jπ/2n)

cos(3jπ/2n)

cos(5jπ/2n)
...

cos((2n − 3)jπ/2n)

⎞
⎟⎟⎟⎟⎟⎠, j = 1, . . . , n, (8)

i.e., Axj = λjxj , j = 1, . . . , n. Moreover, the matrix A is diagonalizable and matrix
P = (x1 x2 · · · xn) diagonalizes A, i.e., P −1AP = D, where D = diag(λ1 λ2 · · · λn).

Proof See [24,34]. �

Obviously, the entries of P can be written as

pij = cos
(2i − 1)(j − 1)π

2n
, i, j = 1, . . . , n.

By using Lemma 2.1 we have Aj = PDjP −1, j = 1, 2, . . . . Hence

exp(rkA) = P exp(rkD)P −1.

On the other hand exp(rkD) = diag(erkλ1 erkλ2 · · · erkλn). Therefore, it is enough to find an explicit
expression for P −1.

Hereafter, we denote the identity matrix of order n and the matrix of order n whose entries are
all ones by I and U , respectively.

Lemma 2.2 By the above notations we have

P −1 = P TR−1, (9)

where R = (n/2)(I + (1/n)U).
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1338 D.K. Salkuyeh and F.S. Sharafeh

Proof It is enough to show that PP T = R, i.e.,

pT
i pj =

⎧⎪⎨
⎪⎩

n + 1

2
, i = j,

1

2
, i �= j,

where pk is the kth column of the matrix P . By using the well-known trigonometric identity

n∑
k=1

cos kθ = sin(n + (1/2))θ

2 sin(θ/2)
− 1

2
, (10)

and a little computation the desired relation can be obtained; the details are omitted. �

Lemma 2.3 The inverse of the matrix R defined in Lemma 2.2 is given by

R−1 = 2

n

(
I − 1

2n
U

)
. (11)

Proof Let u be an n-vector whose entries are all ones. Then we have

R = n

2

(
I + 1

n
uuT

)
.

Now by using the Sherman–Morrison formula [24]

(I + cdT)−1 = I − cdT

1 + dTc
, for c, d ∈ R

n, with dTc �= −1,

we deduce

R−1 = 2

n

(
I − 1

2n
U

)
.

�

Lemma 2.4 Let P = (pij ) and Q = P −1 = (qij ). Then

q1j = 1

n
, j = 1, . . . , n,

qij = 2

n
pji, i = 2, . . . , n, j = 1, . . . , n.

Proof Again by using identity (10), it can be easily verified that

P TU =

⎛
⎜⎜⎜⎝

n n · · · n

0 0 · · · 0
...

...
...

0 0 · · · 0

⎞
⎟⎟⎟⎠ .

Substituting this in Equation (11) yields the desired relation. �
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Theorem 2.5 Let A be the tridiagonal matrix defined in Equation (4) and Z = exp(αA) = (zij ).
Then

zij = 1

n

(
1 + 2

n∑
�=2

eαλ� cos(2i − 1)z� cos(2j − 1)z�

)
, (12)

where z� = ((� − 1)π)/2n and λ� = −2 + 2 cos z�/2.

Proof We have

zij = (P eαDQ)ij

= (
pi1 pi2 · · · pin

)
⎛
⎜⎜⎜⎝

eαλ1q1j

eαλ2q2j

...

eαλnqnj

⎞
⎟⎟⎟⎠

=
n∑

�=1

eαλ�pi�q�j .

On the other hand, we have λ1 = 0, pi1 = 1 and q1j = 1/n. Hence Lemma 2.4 yields

zij = 1

n

(
1 + 2

n∑
�=2

eαλ�pi�pj�

)
,

which is the same relation as Equation (12). �

By using this theorem, for any n-vector y, the explicit expression for the matrices exp(rkA)y

and exp(rtf A)y can be obtained by replacing α by rk and rtf , respectively. Here we mention that
all of the computations can be done in parallel.

For the method based on Equation (6), the stability can be verified as follows. The eigenvalues
of the matrix exp(rkA) are given by erkλ� , � = 1, 2, . . . , n, where λ� is defined as

λ� = −2 + 2 cos
(� − 1)π

n
= −4 sin2 (� − 1)π

2n
.

Hence, erkλ� ≤ 1, � = 1, 2, . . . , n. Therefore, the method is unconditionally stable.

3. Numerical results

In this section, we give the numerical experiments of applying the method based on Equation (5)
for solving the two problems considered in Section 1.All of the numerical experiments presented in
this section were computed in double precision with some MATLAB codes on a personal computer
Pentium 3 – 800EB MHz. It is necessary to mention that after computing the approximate solution
of Equation (3), we compute the approximate solution of the Burgers’s equation by

U(xi, t) = −ν

h

(
	(xi+1, t) − 	(xi−1, t)

	(xi, t)

)
, i = 1, 2, . . . , n.

Numerical results for ν = 1 and ν = 0.1 with h = 0.005 at time levels tf = 0.2, 0.4 and 0.6
for x = 0.25, 0.5 and 0.75 have been given in Tables 1 and 2, respectively. As we observe, the
approximate solutions of the two problems are in good agreement with the exact solution.
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1340 D.K. Salkuyeh and F.S. Sharafeh

Table 1. Numerical results for ν = 1 and h = 0.005 at time levels tf = 0.2,
0.4 and 0.6 for x = 0.25, 0.5 and 0.75.

Problem 1 Problem 2

x Approximate Exact Approximate Exact

tf = 0.2 0.25 0.09443 0.09644 0.09738 0.09947
0.50 0.13609 0.13847 0.14040 0.14289
0.75 0.09731 0.09944 0.10044 0.10266

tf = 0.4 0.25 0.01303 0.01357 0.01344 0.01400
0.50 0.01853 0.01924 0.01912 0.01985
0.75 0.01308 0.01363 0.01350 0.01407

tf = 0.6 0.25 0.00178 0.00189 0.00183 0.00195
0.50 0.00252 0.00267 0.00260 0.00276
0.75 0.00178 0.00189 0.00183 0.00195

Table 2. Numerical results for ν = 0.1 and h = 0.005 at time levels tf = 0.2,
0.4 and 0.6 for x = 0.25, 0.5 and 0.75.

Problem 1 Problem 2

x Approximate Exact Approximate Exact

tf = 0.2 0.25 0.42776 0.42932 0.44507 0.44682
0.50 0.75355 0.75381 0.77278 0.77311
0.75 0.74793 0.74914 0.77214 0.77345

tf = 0.4 0.25 0.30704 0.30889 0.31554 0.31753
0.50 0.56867 0.56963 0.58348 0.58454
0.75 0.62284 0.62544 0.64289 0.64562

tf = 0.6 0.25 0.23898 0.24074 0.24429 0.24614
0.50 0.44578 0.44721 0.45646 0.45798
0.75 0.48380 0.48721 0.49911 0.50268

In Tables 3 and 4, the approximate solutions of Problems 1 and 2 at time level tf = 0.01 with
ν = 10 and for different values of grid points and stepsizes are given. These tables show the effect
of decrease in the stepsize on the convergence. In fact, they show that the error in both solutions
decreases as h decreases.

In Tables 5 and 6, we compare the numerical results of our method (NM) with the method
proposed by Kutluay et al. (KED) in [17]. To do so, we assume k = 0.0001 for the KED method

Table 3. Numerical results for Problem 1 with ν = 10 and tf = 0.01 for different values of grid points.

x h = 1/100 h = 1/200 h = 1/300 h = 1/400 h = 1/500 Exact

0.1 0.10848 0.11155 0.11257 0.11308 0.11339 0.11461
0.2 0.21207 0.21513 0.21615 0.21665 0.21696 0.21816
0.3 0.29473 0.29770 0.29867 0.29916 0.29945 0.30062
0.4 0.34822 0.35108 0.35203 0.35250 0.35278 0.35390
0.5 0.36709 0.36992 0.37085 0.37132 0.37159 0.37270
0.6 0.34931 0.35219 0.35314 0.35361 0.35389 0.35502
0.7 0.29649 0.29948 0.30047 0.30096 0.30125 0.30243
0.8 0.21381 0.21691 0.21793 0.21844 0.21875 0.21997
0.9 0.10952 0.11263 0.11367 0.11418 0.11449 0.11573
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Table 4. Numerical results for Problem 2 with ν = 10 and tf = 0.01 for different values of grid points.

x h = 1/100 h = 1/200 h = 1/300 h = 1/400 h = 1/500 Exact

0.1 0.11191 0.11510 0.11616 0.11669 0.11700 0.11828
0.2 0.21877 0.22197 0.22303 0.22356 0.22387 0.22514
0.3 0.30405 0.30716 0.30819 0.30870 0.30901 0.31023
0.4 0.35924 0.36226 0.36325 0.36375 0.36404 0.36522
0.5 0.37872 0.38171 0.38269 0.38318 0.38347 0.38464
0.6 0.36040 0.36343 0.36443 0.36492 0.36522 0.36641
0.7 0.30592 0.30905 0.31009 0.31061 0.31091 0.31215
0.8 0.22062 0.22385 0.22492 0.22546 0.22578 0.22706
0.9 0.11301 0.11624 0.11732 0.11785 0.11817 0.11946

Table 5. Numerical results for ν = 0.1 and k = 0.0001 at different time
levels (tf ) with h = 0.0125 for Problem 1.

x tf Exact NM KED

0.25 0.4 0.30889 0.30415 0.31215
0.6 0.24074 0.23629 0.24360
0.8 0.19568 0.19150 0.19815
1.0 0.16256 0.15861 0.16473

0.50 0.4 0.56963 0.56711 0.57293
0.6 0.44721 0.44360 0.45088
0.8 0.35924 0.35486 0.36286
1.0 0.29192 0.28710 0.29532

0.75 0.4 0.62544 0.61874 0.63038
0.6 0.48721 0.47855 0.49268
0.8 0.37392 0.36467 0.37912
1.0 0.28747 0.27860 0.29204

and for both methods h = 0.0125. The approximate solutions at different time levels and grid
points are given. As we see, the numerical results of both methods are comparable.

For ν = 0.01, the computed solution of the problems by the method presented in this paper has
been displayed in Figure 1. Here, we assume h = 0.005 and the solutions for different time levels
are shown (Problem 1, top and Problem 2, bottom). This figure is in agreement with the physical
behaviour of the problem.

Table 6. Numerical results for ν = 0.1 and k = 0.0001 at different time levels
(tf ) with h = 0.0125 for Problem 2.

x tf Exact NM KED

0.25 0.4 0.31753 0.31247 0.32091
0.6 0.24614 0.24148 0.24910
0.8 0.19956 0.19524 0.20211
1.0 0.16560 0.16153 0.16782

0.50 0.4 0.58454 0.58176 0.58788
0.6 0.45798 0.45414 0.46174
0.8 0.36740 0.36283 0.37111
1.0 0.29835 0.29336 0.30183

0.75 0.4 0.64562 0.63858 0.65054
0.6 0.50268 0.49362 0.50825
0.8 0.38534 0.37570 0.39068
1.0 0.29586 0.28663 0.30057
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1342 D.K. Salkuyeh and F.S. Sharafeh

Figure 1. Approximate solutions of the problems at different time levels with ν = 0.01 and h = 0.005 (Problem 1, top
and Problem 2, bottom).
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Figure 2. Logarithm of the absolute errors at time t = 0.1 for Equation (13).

Since the method described in this paper is directly applied for solving the heat equation, we
give the numerical results of implementing the method for solving the following model

θt = θxx, 0 < x < π, t > 0, (13)

θ(x, 0) = cos x, 0 < x < π,

θx(0, t) = θx(π, t) = 0, t > 0.

The analytical solution of this model is θ(x, t) = e−t cos x. The logarithm of the absolute errors
at time level t = 0.1 with h = π/100 and k = 0.01 are displayed in Figure 2. The figure shows
the efficiency of the method.

4. Conclusion

In this paper, the heat equation arisen from the Burgers’s equation by the Hopf–Cole transformation
is semi-discretized. This kind of discretization results in a large system of ordinary differential
equations. We have presented an efficient method for solving this system. Numerical examples
confirm the efficiency of the method.
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